Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Bisectriz de un ángulo

De Wikillerato

La bisectriz de un ángulo formado por dos rectas r y s que se cortan en el punto V se define como el lugar geométrico de los puntos del plano que están a la misma distancia de la recta r que de la recta s. La bisectriz de un ángulo es otra recta concurrente con las dos que forman el ángulo, es decir, que pasa también por el vértice V del ángulo.

Imagen:bisectriz.png

Evidentemente, dos rectas r y s que se cortan dividen al plano en cuatro regiones y forman igualmente cuatro ángulos distintos con el mismo vértice. De estos cuatro ángulos los que son opuestos por el vértice son iguales entre sí y los adyacentes son complementarios. Los ángulos opuestos por el vértice comparten la misma bisectriz, mientras que las bisectrices de dos ángulos complementarios adyacentes son ortogonales (perpendiculares).

Imagen:bisectrices_ortogonales.png

Para determinar la bisectriz del ángulo determinado por dos semirectas r y s con origen en un vértice común V habrá que determinar primero un punto P que equidiste de las dos semirectas. Una vez determinado éste, la semirecta con origen en V que pasa por el punto P será la bisectriz buscada.

Una posibilidad es trazar una recta paralela a r a una distancia d de la misma, y otra recta paralela a s que esté a la misma distancia d de ella. Ambas paralelas se cortarán en un punto P, que equidista de r y s, siendo por lo tanto la recta VP la bisectriz del ángulo formado por r y s.

Imagen:bisectriz_por_paralelas.png

Dados un punto M sobre la recta r y otro punto N sobre la recta s, ambos a la misma distancia del vértice V, la bisectriz del ángulo formado por las rectas r y s coincidirá con la mediatriz del segmento MN, lo que nos brinda una construcción alternativa de la bisectriz de un ángulo.


Imagen:bisectriz_mediatriz.png

Cuando el vértice del ángulo no es accesible (está fuera de los límites del papel) se dibuja una recta cualquiera que atraviese a las dos dadas. Se dibujan las bisectrices de los cuatro ángulos que se forman entre las dos rectas dadas y la auxiliar. Uniendo los puntos de corte de las cuatro bisectrices se obtiene la bisectriz de las dos rectas dadas.

Enlaces externos

TRAZOIDE. Teoría y ejercicios resueltos de BISECTRICES y ÁNGULOS en Dibujo Técnico
Cargando feed...
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.