Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Distribuciones discretas

De Wikillerato

(Diferencias entre revisiones)
Línea 280: Línea 280:
\bar{A}
\bar{A}
</math>
</math>
-
&nbsp; llamado ''fracaso''.
+
, llamado ''fracaso''.
<br/>
<br/>
Línea 365: Línea 365:
<br/>
<br/>
-
La diferencia entre estas tres posibilidades ( sucesos ) es la prueba en que ocurre el
+
La diferencia entre estas tres posibilidades ( sucesos elementales ) es la prueba en que
-
fracaso. En el primer caso el fracaso ocurre en la primera prueba, en el segundo caso
+
ocurre el fracaso. En el primer caso el fracaso ocurre en la primera prueba, en el
-
ocurre en la segunda y en el tercer caso ocurre en la tercera.
+
segundo caso ocurre en la segunda y en el tercer caso ocurre en la tercera.
<br/>
<br/>

Revisión de 01:25 27 dic 2006

Tabla de contenidos


Función de probabilidad


Denotaremos como   
\mathrm{P}
\left(
</p>
<pre>  \, X \, = \, x_i \,
</pre>
<p>\right)
  a la probabilidad de que la variable aleatoria tome el valor   
x_i
.


Se llama función de probabilidad de una variable aleatoria discreta   
X
a la aplicacion que a cada valor de   
x_i
  de la variable le hace corresponder la probabilidad de que la variable tome dicho valor:



\mathrm{f}
\left(
</p>
<pre>  \, x_i \,
\right)
\, = \,
\mathrm{P}
\left(
   \, X \, = \, x_i \,
\right)
</pre>
<p>


Por definición, deducimos que si   
\left\{
</p>
<pre> \, x_1, \, x_2, \ldots, \, x_n \, 
</pre>
<p>\right\}
  son los valores que puede tomar la variable   
X
, entonces:



\sum_{i \, = \, 1}^n \mathrm{f} \left( \, x_i  \, \right) \, = \, \mathrm{f} \left( \,
</p>
<pre> x_1 \, \right) \, + \, \mathrm{f} \left( \, x_2 \, \right) \, + \,
</pre>
<p>\ldots \, + \, \mathrm{f} \left( \, x_n \, \right) \, = \, 1


ya que esta suma es, en realidad, la probabilidad del suceso seguro.


Ejemplo


En el experimento de lanzar tres monedas al aire, la aplicación   
X
  que asigna a cada resultado el numero de cruces obtenidas es una variable aleatoria. En este caso:



\begin{array}[c]{cc}
\mathrm{f} \left( \, 0 \, \right) \, = \, \mathrm{P}
</p>
<pre>\left(
  \, X \, = \, 0 \,
\right)
\, = \, \frac{1}{8} \qquad
&
\mathrm{f}
\left(
  \, 1 \,
\right)
\, = \, \mathrm{P}
\left(
  \, X \, = \, 1 \,
\right)
\, = \, \frac{3}{8}
\qquad 
\\
& 
\\
\mathrm{f} \left( \, 2 \, \right) \, = \, \mathrm{P}
\left(
  \, X \, = \, 2 \,
\right)
\, = \, \frac{3}{8} \qquad
&
\mathrm{f} \left( \, 3 \, \right) \, = \, \mathrm{P}
\left(
  \, X \, = \, 3 \,
\right)
\, = \, \frac{1}{8} \qquad 
</pre>
<p>\end{array}


Observa que   
\mathrm{f} \left( \, 0 \, \right) \, + \, \mathrm{f} \left( \, 1 \, \right) \, + \, 
\mathrm{f} \left( \, 2 \, \right) \, + \, \mathrm{f} \left( \, 3 \, \right) \, = \, 1


Función de distribución


Dada una variable aleatoria discreta   
X
, su función de distribución es la aplicación que a cada valor de   
x_i
  de la variable le asigna la probabilidad de que ésta tome valores menores o iguales que   
x_i
, y la denotamos por:



\mathrm{F} \left( \, x_i  \, \right) \, = \, \mathrm{P}
\left(
</p>
<pre>  \, X \le x_i \,
</pre>
<p>\right)


La función de distribución de cualquier variable aleatoria discreta tiene las siguentes caracteristicas:


1. Al ser una probabilidad,   
1 \ge \mathrm{F} \left( \, x_i  \, \right) \ge 0
.


2.   
\mathrm{F} \left( \, x  \, \right)
  es nula para todo valor de   
x
  menor que el menor valor de la variable aleatoria, y es igual a la unidad para todo valor de   
x
  mayor que el mayor valor de la variable.


3.   
\mathrm{F} \left( \, x  \, \right)
  es creciente.


4.   
\mathrm{F} \left( \, x  \, \right)
  es constante en cada intervalo   
\left(
</p>
<pre>  \, x_i, \, x_{i \, + \, 1} \,
</pre>
<p>\right)
, además es continua a la derecha de   
x_i
  y a la izquierda   
x_{i \, + \, 1}
, y discontinua a la izquierda de   
x_i
  y a la derecha de   
x_{i+1}
, para   
i \, = \, 1, \, \ldots, \, n \, - \, 1
 


5. Sea   
x_j > x_i
, entonces   
\mathrm{F}
\left(
</p>
<pre>  \, x_j \,
\right)
\, - \,
\mathrm{F}
</pre>
<p>\left(
</p>
<pre>  \, x_i \,
\right)
\, = \,
\mathrm{P}
\left(
   \, x_j \ge X > x_i \,
\right)
</pre>
<p>


Distribución binomial


Supongamos que un experimento aleatorio tiene las siguientes caracteristicas:


1. En cada prueba del experimento sólo son posibles dos resultados: el suceso   
A
, llamado exito, y su contrario,   
\bar{A}
, llamado fracaso.


2. El resultado de cada prueba es independiente de los resultados obtenidos anteriormente.


3. La probabilidad de   
A
, que denotamos por   
p
, no varía de una prueba a otra.


4. En cada experimento se realizan   
n
  pruebas idénticas.


Todo experimento aleatorio con estas características se dice que sigue el modelo de la distribución binomial.

A la variable   
X
, que representa el número de éxitos obtenidos en el experimento, se le llama variable aleatoria binomial.


Al ser la variable aleatoria binomial una variable aleatoria discreta, tiene asociadas una función de probabilidad y una función de distribución.


Existen varias maneras de obtener   
r
  exitos en las   
n
  pruebas. Supongamos que   
n \, = \, 3
  y calculemos la probabilidad del suceso   
\left\{
</p>
<pre>  \, X \, = \, 2 \,
</pre>
<p>\right\}
.   Existen tres posibilidades de que ocurra   
X \, = \, 2



\begin{array}[c]{cc}
</p>
<pre> 1^\circ: & \bar{A}AA
 \\
 2^\circ: & A\bar{A}A
 \\
 3^\circ: & AA\bar{A}
</pre>
<p>\end{array}


La diferencia entre estas tres posibilidades ( sucesos elementales ) es la prueba en que ocurre el fracaso. En el primer caso el fracaso ocurre en la primera prueba, en el segundo caso ocurre en la segunda y en el tercer caso ocurre en la tercera.


Como estos sucesos son incompatibles, se tiene que:



\mathrm{P}
\left(
</p>
<pre> \, X \, = \, 2 \,
</pre>
<p>\right)
\, = \, \mathrm{P}
\left(
</p>
<pre>  \, \bar{A}AA \,
\right)
\, + \, \mathrm{P}
\left(
   \, A\bar{A}A \,
 \right)
\, + \, \mathrm{P}
\left(
   \, AA\bar{A} \,
\right)
</pre>
<p>




\mathrm{P}
\left(
</p>
<pre> \, \bar{A}AA \,
</pre>
<p>\right)
\, = \, \mathrm{P}
\left(
</p>
<pre> \, A\bar{A}A \,
</pre>
<p>\right)
\, = \, \mathrm{P}
\left(
</p>
<pre> \, AA\bar{A} \,
</pre>
<p>\right)
</p>
<pre>\, = \, p^2 \cdot
</pre>
<p>\left(
</p>
<pre>  \, 1 \, - \, p \,
</pre>
<p>\right)
. Por ejemplo:



\mathrm{P}
\left(
</p>
<pre> \, AA\bar{A}
</pre>
<p>\right)
\, = \, \mathrm{P} \left( \, A  \, \right) \cdot \mathrm{P} \left( \, A  \, \right)
\cdot \mathrm{P} \left( \, \bar{A} \, \right)


donde la ultima igualdad es cierta por que los resultados de las tres pruebas son independientes.


Así



\mathrm{P}
\left(
</p>
<pre> \, X \, = \, 2 \,
</pre>
<p>\right)
\, = \, 3 \cdot  p^2 \cdot
\left(
</p>
<pre> \, 1 \, - \, p \,
</pre>
<p>\right)


En general:



\mathrm{P}
\left(
</p>
<pre> \, X \, = \, r \,
</pre>
<p>\right)
\, = \,
\left(
</p>
<pre> \, { n \atop r }
</pre>
<p>\right)
\cdot p^r \cdot
\left(
</p>
<pre> \, 1 \, - \, p \,
</pre>
<p>\right)
^
\left(
</p>
<pre> \, n \, - \, r \,
</pre>
<p>\right)


donde   
\left(
</p>
<pre> \, { n \atop r }
</pre>
<p>\right)
  es el numero de sucesos elementales que componen el suceso   
\left\{
</p>
<pre>  \, X \, = \, r \,
</pre>
<p>\right\}
  ( estos sucesos elementales tienen en comun un mismo número de exitos y de fracasos y solo se diferencian en el orden en que ocurren los exitos y los fracasos ).



p^r \cdot
\left(
</p>
<pre> \, 1 \, - \, p \,
</pre>
<p>\right)
^
\left(
</p>
<pre> \, n \, - \, r \,
</pre>
<p>\right)
  es la probabilidad de uno cualquiera de estos sucesos elementales.


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.