Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

¿Qué es una matriz?

De Wikillerato

Tabla de contenidos


Definición de matriz


Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.


Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz de dimensión   
m \times n 
  a un conjunto de números reales dispuestos en   
m
  filas y   
n
  columnas de la siguiente forma  




\left(
</p>
<pre> \begin{array}[c]{cccc}
   a_{11 }& a_{12} & \ldots &  a_{1n}
   \\
   a_{21 }& a_{22} & \ldots &  a_{2n}
   \\
   \vdots & \vdots & \ddots & \vdots
   \\
   a_{m1 }& a_{m2} & \ldots &  a_{mn}
 \end{array}
</pre>
<p>\right)


La matriz   
\mathbf{A} 
  se puede denotar también como   
\quad \mathbf{A} = \left( a_{ij} \right) \quad
  donde



\left\{
</p>
<pre> \begin{array}[c]{l}
   i = 1, \, 2, \, \ldots, \, m
   \\
   j = 1, \, 2, \, \ldots, \, n
 \end{array}
</pre>
<p>\right.



a_{ij}
designa un elemento generico de la matriz   
\mathbf{A}
,   el elemento que se encuentra en la i-esima fila y j-esima columna.

Tipos de matrices


Matriz cuadrada


Las matrices cuadradas son aquellas que tienen el mismo número de filas que de columnas.


En las matrices cuadradas tenemos:


la diagonal principal formada por los elementos de la forma   
a_{ii}
 

la diagonal secundaria formada por los elementos de la forma   
a_{ij}
  tales que   
i + j = n + 1


Image:diagonales.gif


Matrices rectangulares


Una matriz rectangular es aquella que tiene distinto número de filas que de columnas. Si una matriz NO es cuadrada tiene que ser rectangular.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & -1 & ~~0
     \\
     2 & ~~3 & -1
   \end{array}
 \right)
</pre>
<p>


Matrices filas


Una matriz fila es una matriz con una sola fila. Su dimensión es   
1 \times n
.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     -1 & 3 & 5 
   \end{array}
 \right)
</pre>
<p>


Matrices columna


Una matriz columna es una matriz rectangular con una sola columna. Su dimensión es   
m \times 1
.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{c}
     -1 
     \\
     ~~3
   \end{array}
 \right)
</pre>
<p>


Matrices nulas


Una matriz nula es una matriz cuyos elementos son todos nulos. Se denota por   
\mathbf{0}_{m \times n}
.


Donde   
m \times n
  es la dimensión de la matriz.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     0 & 0 & 0
     \\
     0 & 0 & 0
   \end{array}
 \right)
</pre>
<p>


Matrices triangulares superiores


Una matriz triangular superior es una matriz cuadrada en la que todos los terminos situados por debajo de la diagonal principal son ceros.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & -1 & ~~0
     \\
     0 & ~~3 & -1
     \\
     0  & ~~0 & ~~2
   \end{array}
 \right)
</pre>
<p>


Matrices triangulares inferiores


Una matriz triangular inferior es una matriz cuadrada en la que todos los terminos situados por encima de la diagonal principal son ceros.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     2 & ~~0 & 0 
     \\
     3 & -1 & 0
     \\
     1 & -1 & 3
   \end{array}
 \right)
</pre>
<p>


Matrices diagonales


Una matriz diagonal es una matriz cuadrada en la que todos los terminos NO situados en la diagonal principal son ceros.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     ~~2 & ~~0 & ~~0 
     \\
     ~~0 & -1 & ~~0
     \\
     ~~0 & ~~0 & ~~3
   \end{array}
 \right)
</pre>
<p>


Matrices escalares


Una matriz escalar es una matriz diagonal en la que todos los términos de la diagonal principal son iguales.


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     2 & {0} & {0} 
     \\
     {0} & 2 & {0}
     \\
     {0} & {0} & 2
   \end{array}
 \right)
</pre>
<p>


Matrices unidad o identidad


Una matriz unidad o identidad es una matriz escalar cuyos elementos en la diagonal principal son todos 1 y los demás elementos fuera de la diagonal principal son "0".


Ejemplo



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & {0} & {0} 
     \\
     {0} & 1 & {0}
     \\
     {0} & {0} & 1
   \end{array}
 \right)
</pre>
<p>


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.