Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Ayuda:Fórmulas Matemáticas

De Wikillerato

(Diferencias entre revisiones)
Línea 383: Línea 383:
<th>Cómo se verá</th>
<th>Cómo se verá</th>
</tr>
</tr>
 +
<tr>
<tr>
<td>Fracciones</td>
<td>Fracciones</td>
Línea 388: Línea 389:
<td><math>\frac{2}{4}=0.5</math></td>
<td><math>\frac{2}{4}=0.5</math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>Coeficiente binomial</td>
<td>Coeficiente binomial</td>
Línea 393: Línea 395:
<td><math>\binom{n}{k}</math></td>
<td><math>\binom{n}{k}</math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td rowspan="7">Matrices</td>
<td rowspan="7">Matrices</td>
Línea 398: Línea 401:
<td><math> \begin{matrix} x & y \\ z & v \end{matrix} </math></td>
<td><math> \begin{matrix} x & y \\ z & v \end{matrix} </math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>\begin{vmatrix}<br />x &amp; y \\<br />z &amp; v<br />\end{vmatrix}</td>
<td>\begin{vmatrix}<br />x &amp; y \\<br />z &amp; v<br />\end{vmatrix}</td>
<td><math> \begin{vmatrix} x & y \\ z & v \end{vmatrix} </math></td>
<td><math> \begin{vmatrix} x & y \\ z & v \end{vmatrix} </math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>\begin{Vmatrix<br />x &amp; y \\<br />z &amp; v<br />\end{Vmatrix}</td>
<td>\begin{Vmatrix<br />x &amp; y \\<br />z &amp; v<br />\end{Vmatrix}</td>
<td><math> \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} </math></td>
<td><math> \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} </math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>\begin{bmatrix}<br />0 &amp; \cdots &amp; 0 \\<br />\vdots &amp; \ddots &amp; \vdots \\<br />0 &amp; \cdots &amp; 0<br />\end{bmatrix}</td>
<td>\begin{bmatrix}<br />0 &amp; \cdots &amp; 0 \\<br />\vdots &amp; \ddots &amp; \vdots \\<br />0 &amp; \cdots &amp; 0<br />\end{bmatrix}</td>
<td><math> \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} </math></td>
<td><math> \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} </math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>\begin{Bmatrix}<br />x &amp; y \\<br />z &amp; v<br />\end{Bmatrix}</td>
<td>\begin{Bmatrix}<br />x &amp; y \\<br />z &amp; v<br />\end{Bmatrix}</td>
<td><math> \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} </math></td>
<td><math> \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} </math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>\begin{pmatrix}<br />x &amp; y \\<br />z &amp; v <br />\end{pmatrix}</td>
<td>\begin{pmatrix}<br />x &amp; y \\<br />z &amp; v <br />\end{pmatrix}</td>
<td><math> \begin{pmatrix} x & y \\ z & v \end{pmatrix} </math></td>
<td><math> \begin{pmatrix} x & y \\ z & v \end{pmatrix} </math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>\bigl( \begin{smallmatrix}<br />a&amp;b\\ c&amp;d<br />\end{smallmatrix} \bigr)</td>
<td>\bigl( \begin{smallmatrix}<br />a&amp;b\\ c&amp;d<br />\end{smallmatrix} \bigr)</td>
<td><math> \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) </math></td>
<td><math> \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) </math></td>
</tr>
</tr>
 +
<tr>
<tr>
<td>Distinción de casos</td>
<td>Distinción de casos</td>
Línea 436: Línea 446:
<tr>
<tr>
<td>\begin{array}{lclcl}<br />z & = & a & = & \sqrt 2\\<br />f(x,y,z) & = & x + y + z & = & t^2\\<br />f(z) & = & x+y & = & 2 \pi<br />\end{array}</td>
<td>\begin{array}{lclcl}<br />z & = & a & = & \sqrt 2\\<br />f(x,y,z) & = & x + y + z & = & t^2\\<br />f(z) & = & x+y & = & 2 \pi<br />\end{array}</td>
-
<td><math> \begin{array}{lclcl} z & = & a & = & \sqrt 2\\ f(x,y,z) & = & x + y + z & = & t^2\\ f(z) & = & x+y & = & 2 \pi \end{array} </math></td> </tr>
+
<td><math> \begin{array}{lclcl} z & = & a & = & \sqrt 2\\ f(x,y,z) & = & x + y + z & = & t^2\\ f(z) & = & x+y & = & 2 \pi \end{array} </math></td>
 +
</tr>
<tr>
<tr>
Línea 447: Línea 458:
</td>
</td>
</tr>
</tr>
 +
<tr>
<tr>
<td>Ecuaciones simultáneas</td>
<td>Ecuaciones simultáneas</td>

Revisión de 15:36 6 nov 2007

Ayuda A continuación ofrecemos un cuadro de referencia con nociones básicas y ejemplos que sirven de ayuda para escribir fórmulas utilizando el código LaTeX.

Tabla de contenidos

Básicos

Acentos
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
\check{a} \bar{a} \ddot{a} \dot{a}  \check{a} \bar{a} \ddot{a} \dot{a}
Funciones estándar
\sin a \cos b \tan c  \sin a \cos b \tan c
\sec d \csc e \cot f  \sec d \csc e \cot f
\arcsin h \arccos i \arctan j  \arcsin h \arccos i \arctan j
\sinh k \cosh l \tanh m \coth n  \sinh k \cosh l \tanh m \coth n
\lim u \limsup v \liminf w \min x \max y  \lim u \limsup v \liminf w \min x \max y
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g  \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
Derivadas
\nabla \partial x dx \dot x \ddot y  \nabla \partial x dx \dot x \ddot y
Conjuntos
\forall \exists \emptyset \varnothing  \forall \exists \emptyset \varnothing
\in \ni \notin \subset \subseteq \supset \supseteq  \in \ni \notin \subset \subseteq \supset \supseteq
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus  \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup  \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
Operadores
+ \oplus \bigoplus \pm \mp -  + \oplus \bigoplus \pm \mp -
\times \otimes \bigotimes \cdot \circ \bullet \bigodot  \times \otimes \bigotimes \cdot \circ \bullet \bigodot
\star * / \div \frac{1}{2}  \star * / \div \frac{1}{2}
Lógica
\land \wedge \bigwedge \bar{q} \to p  \land \wedge \bigwedge \bar{q} \to p
\lor \vee \bigvee \lnot \neg q \And  \lor \vee \bigvee \lnot \neg q \And
Raíces
\sqrt{2} \sqrt[n]{x}  \sqrt{2} \sqrt[n]{x}
Relaciones
\sim \approx \simeq \cong  \sim \approx \simeq \cong
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto  \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
Geometría
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ  \Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
Flechas
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow  \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft  \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow  \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow
\Longrightarrow \Uparrow \Downarrow \Updownarrow  \Longrightarrow \Uparrow \Downarrow \Updownarrow
\nLeftrightarrow \longleftrightarrow  \nLeftrightarrow \longleftrightarrow
Especial
\eth \S \P \% \dagger \ddagger \ldots \cdots  \eth \S \P \% \dagger \ddagger \ldots \cdots
\smile \frown \wr \triangleleft \triangleright \infty \bot \top  \smile \frown \wr \triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar  \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
Otros
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown  \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge  \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes  \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant  \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot  \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox  \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot  \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq  \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork  \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq  \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid  \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr  \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq  \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq  \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq  \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq

Subíndices, superíndices, integrales

  Sintaxis Cómo se verá
Superíndice a^2  a^2
Subíndice a_2  a_2
Agrupar a^{2+2}  a^{2+2}
a_{i,j}  a_{i,j}
Combinar superindice y subíndice x_2^3  x_2^3
Superíndices y subíndices, anteriores, posteriores, arriba y abajo \sideset {_1^2} {_3^4} \prod_a^b  \sideset {_1^2} {_3^4} \prod_a^b
{}_1^2 \! \Omega_3^4  {}_1^2 \! \Omega_3^4
Apilar \overset { \alpha} { \omega}  \overset { \alpha} { \omega}
\overset { \alpha} { \underset { \gamma} { \omega}}  \overset { \alpha} { \underset { \gamma} { \omega}}
\stackrel { \alpha} { \omega}  \stackrel { \alpha} { \omega}
Derivadas x', y, f', f  x', y'', f', f''
Subrayado, línea superior, vectores \hat a \ \bar b \ \vec c  \hat a \ \bar b \ \vec c
\overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}  \overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}
\overline {g h i} \underline {j k l}  \overline {g h i} \underline {j k l}
Flechas A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C  A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C
Llaves superiores \overbrace{ 1+2+ \cdots+100 } ^ {5050}  \overbrace{ 1+2+ \cdots+100 } ^ {5050}
Llaves inferiores \underbrace { a+b+ \cdots+z }_{26}  \underbrace { a+b+ \cdots+z }_{26}
Sumatorios \sum_{k=1}^N k^2  \sum_{k=1}^N k^2
Productorio \prod_{i=1}^N x_i  \prod_{i=1}^N x_i
Coproducto \coprod_{i=1}^N x_i  \coprod_{i=1}^N x_i
Límite \lim_{n \to \infty}x_n  \lim_{n \to \infty}x_n
Integral \int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx
Integral doble \iint_{D}^{W} \, dx\,dy  \iint_{D}^{W} \, dx\,dy
Integral triple \iiint_{E}^{V} \, dx\,dy\,dz  \iiint_{E}^{V} \, dx\,dy\,dz
Integral de línea \oint_{C} x^3\, dx + 4y^2\, dy  \oint_{C} x^3\, dx + 4y^2\, dy
Intersecciones \bigcap_1^{n} p  \bigcap_1^{n} p
Uniones \bigcup_1^{k} p  \bigcup_1^{k} p

Fracciones, matrices, multilíneas

  Sintaxis Cómo se verá
Fracciones \frac{2}{4}=0.5 \frac{2}{4}=0.5
Coeficiente binomial \binom{n}{k} \binom{n}{k}
Matrices \begin{matrix}
x & y \\
z & v
\end{matrix}
 \begin{matrix} x & y \\ z & v \end{matrix}
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
 \begin{vmatrix} x & y \\ z & v \end{vmatrix}
\begin{Vmatrix
x & y \\
z & v
\end{Vmatrix}
 \begin{Vmatrix} x & y \\ z & v \end{Vmatrix}
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
 \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
 \begin{Bmatrix} x & y \\ z & v \end{Bmatrix}
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
 \begin{pmatrix} x & y \\ z & v \end{pmatrix}
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
 \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)
Distinción de casos f(n) =
\begin{cases}
n/2, & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
 f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}
Ecuaciones multilínea (se debe definir el número de columnas con {lcl}) \begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
 \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}
\begin{array}{lclcl}
z & = & a & = & \sqrt 2\\
f(x,y,z) & = & x + y + z & = & t^2\\
f(z) & = & x+y & = & 2 \pi
\end{array}
 \begin{array}{lclcl}   z        & = & a & = & \sqrt 2\\  f(x,y,z) & = & x + y + z & = & t^2\\ f(z) & = & x+y & = & 2 \pi \end{array}
Romper largas expresiones para hacer más legible el código <math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

 f(x) \,\!  = \sum_{n=0}^ \infty a_n x^n  = a_0+a_1x+a_2x^2+ \cdots

Ecuaciones simultáneas \begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
 \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}

Alfabetos

Alfabeto griego
\Delta \Theta \Lambda  \Delta \Theta \Lambda
\Xi \Pi \Sigma \Xi \Pi \Sigma
\Upsilon \Phi \Psi \Omega  \Upsilon \Phi \Psi \Omega
\alpha \beta \gamma \delta \epsilon \zeta  \alpha \beta \gamma \delta \epsilon \zeta
\eta \theta \iota \kappa \lambda \mu  \eta \theta \iota \kappa \lambda \mu
\nu \xi \pi \rho \sigma \tau  \nu \xi \pi \rho \sigma \tau
\upsilon \phi \chi \psi \omega  \upsilon \phi \chi \psi \omega
\varepsilon \digamma \vartheta \varkappa  \varepsilon \digamma \vartheta \varkappa
\varpi \varrho \varsigma \varphi  \varpi \varrho \varsigma \varphi

Añadiendo paréntesis a grandes expresiones

  Sintaxis Cómo se verá
Mal ( \frac{1}{2} )  ( \frac{1}{2} )
Bien \left ( \frac{1}{2} \right )  \left ( \frac{1} {2} \right )
  Sintaxis Cómo se verá
Paréntesis \left ( \frac{a}{b} \right )  \left ( \frac{a}{b} \right )
Corchetes \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack  \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
Llaves \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace  \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
Barras y dobles barras \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|  \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
Barras invertidas \left / \frac{a}{b} \right \backslash  \left / \frac{a}{b} \right \backslash
Flechas arriba y abajo \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow  \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
Los delimitadores pueden mezclarse \left [ 0,1 \right )  \left [ 0,1 \right )
Usa \left. y \right. si no quieres que un delimitador aparezca \left . \frac{A}{B} \right \} \to X  \left . \frac{A}{B} \right \} \to X
Tamaño de los delimitadores \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]  \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]
\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle  \big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow  \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow  \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash  \big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

Espaciado

Colores

Ejemplos

actualizando

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.