Caída libre y lanzamiento vertical
De Wikillerato
m (Revertidas las ediciones realizadas por 190.90.239.182 (Talk); a la última edición de Laura.2mdc) |
(→Caída libre) |
||
Línea 13: | Línea 13: | ||
<math> y = y_0 + v_0 t - \frac {1}{2} g t^2</math> | <math> y = y_0 + v_0 t - \frac {1}{2} g t^2</math> | ||
- | <math> y = y_0 - \frac {1}{2} g t^2</math> | + | <math> y = y_0 - \frac {1}{2} g t^2</''nnnn[[Imagen:[[Media:Ejemplo.jpg]]<math>--~~~~Escriba aquí una fórmula |
+ | <quiz display=simple> | ||
+ | {Escribe aquí el enunciado de la pregunta | ||
+ | |type="[]"} | ||
+ | - Escribe aquí una respuesta falsa | ||
+ | - Escribe aquí una respuesta falsa | ||
+ | - Escribe aquí una respuesta falsa | ||
+ | + Escribe aquí una respuesta correcta | ||
+ | </quiz> | ||
+ | |||
+ | <pie 3d title="Gráfica pastel" size=300x150 xlabel> | ||
+ | dato1, 34.2 | ||
+ | dato2, 27.8 | ||
+ | dato3, 7.4 | ||
+ | dato4, 8.1 | ||
+ | dato5, 9.8 | ||
+ | </pie> | ||
+ | </math>]]''math> | ||
La representación gráfica del movimiento será: | La representación gráfica del movimiento será: |
Revisión de 23:21 3 jul 2013
Caída libre
La caída libre es un caso particular del movimiento rectilíneo uniformemente acelerado, en el cual la aceleración es siendo
En consecuencia, las ecuaciones del movimiento serán:
Para el caso de la caída libre, la velocidad inicial es cero; la propia frase lo indica: se deja caer el cuerpo en caída libre.
como , queda
Por otra parte, para el espacio, o altura a la que se encuentra el cuerpo:
[Unparseable or potentially dangerous latex formula. Error 3 ]]]math>
La representación gráfica del movimiento será:
Lanzamiento vertical
Para el lanzamiento vertical nos encontramos con que es positiva, y así se mantendrá aún cuando su módulo llegue a valer cero. Esto ocurrirá en el punto más alto de la trayectoria, en el cual la , pues pasará de valores positivos a negativos. En ese punto de la altura máxima, el móvil se encontrará parado durante un instante, después del cual comenzará caer. Durante todo el movimiento la aceleración que sufrirá la partícula será la de la gravedad, la cual siempre tiene el mismo sentido, hacia abajo y, por convenio, negativo.
La representación gráfica del movimiento será:
Para , la tangente a la gráfica es horizontal, se corresponde con la altura máxima y con el instante en que la gráfica se hace cero.