Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Métodos de integración

De Wikillerato

(Diferencias entre revisiones)
Línea 1: Línea 1:
-
 
==Introducción==
==Introducción==
Línea 5: Línea 4:
No todos los métodos de integración son adecuados para todas las integrales. La
No todos los métodos de integración son adecuados para todas las integrales. La
-
habilidad de ver cual es el método mas idoneo para calcular una integral se
+
habilidad de ver cual es el método de integración mas idoneo para calcular una integral se
adquiere resolviendo muchas integrales.
adquiere resolviendo muchas integrales.

Revisión de 16:35 15 nov 2010

Tabla de contenidos

Introducción


No todos los métodos de integración son adecuados para todas las integrales. La habilidad de ver cual es el método de integración mas idoneo para calcular una integral se adquiere resolviendo muchas integrales.


Integración por partes


La fórmula para la derivada de un producto es:


\left( \, u \cdot v \, \right)^\prime = u^\prime \cdot v + u \cdot v^\prime

Despejando el último sumando, queda:


u \cdot v^\prime = \left( \, u \cdot v \, \right)^\prime - u^\prime \cdot v

Si integramos en los dos miembros, se obtiene:


\int u \cdot v^\prime \cdot \mathrm{d}x = \int \left( \, u \cdot v \, \right)^\prime \mathrm{d}x - \int
u^\prime \cdot v \cdot\mathrm{d}x = u \cdot v - \int u^\prime \cdot v \cdot\mathrm{d}x

La última igualdad es cierta porque una primitiva de la derivada de una función es esa misma función.


Esta fórmula permite calcular la integral   
\int u \cdot v^\prime \cdot \mathrm{d}x 
  a partir de la integral   
\int u^\prime \cdot v \cdot\mathrm{d}x
.


Para que sea de utilidad el utilizar este metodo es necesario que nos resulte mas sencilla de resolver la integral   
\int u^\prime \cdot v \cdot\mathrm{d}x
  que la integral de partida,   
\int u \cdot v^\prime \cdot \mathrm{d}x
.


Ejemplo


Calculemos la integral


\int x \cdot e^x \cdot \mathrm{d}x

por partes.


Si hacemos


\begin{array}{ll}
</p>
<pre> u \left( \, x \, \right) & = x
 \\
 v^\prime \left( \, x \, \right) & = e^x
</pre>
<p>\end{array}

se tiene que


\begin{array}{ll}
</p>
<pre> u^\prime \left( \, x \, \right) & = 1
 \\
 v \left( \, x \, \right) & = e^x
</pre>
<p>\end{array}

Utilizando la fórmula que hemos visto antes


\int u \cdot v^\prime \cdot \mathrm{d}x = \int \left( \, u \cdot v \, \right)^\prime \mathrm{d}x - \int
u^\prime \cdot v \cdot\mathrm{d}x

se deduce que


\int  x  \cdot  e^x  \cdot  \mathrm{d}x  =  x \cdot  e^x  -  \int  1  \cdot  e^x
\cdot\mathrm{d}x = x \cdot e^x - e^x + C = \left( \, x - 1 \, \right) \cdot e^x + C


Método de sustitución


Supongamos que queremos resolver una integral del tipo:


\int  \mathrm{g}^\prime \left(  \,  \mathrm{f} \left(  x  \right) \right)  \cdot
\mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x

Una manera de resolver un problema de este tipo es haciendo el cambio de variable


t = \mathrm{f} \left( x \right)

La nueva variable 
t
es una función de 
x
, con lo cual podemos hablar de la derivada de 
t
con respecto de 
x
, que se puede escribir como un cociente de diferenciales:


\mathrm{f}^\prime \left( x \right) = \frac{\mathrm{d}t}{\mathrm{d}x}

Despejando   
\mathrm{d}t
  en la igualdad anterior, se deduce que


\mathrm{d}t = \mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x

Sustituyendo   
\mathrm{d}t 
  por   
\mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x
  y   
\mathrm{f} \left( x \right)
  por 
t 
en


\int  \mathrm{g}^\prime \left(  \,  \mathrm{f} \left(  x  \right) \right)  \cdot
\mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x

se tiene que


\int  \mathrm{g}^\prime \left(  \,  \mathrm{f} \left(  x  \right) \right)  \cdot
\mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x = \int \mathrm{g} \left(
</p>
<pre> t \right) \cdot \mathrm{d}t 
</pre>
<p>

Supongamos que   
\mathrm{G} \left( x \right)
  es una primitiva de   
\mathrm{g} \left( x \right)
, entonces


\int  \mathrm{g}^\prime \left(  \,  \mathrm{f} \left(  x  \right) \right)  \cdot
\mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x = \int \mathrm{g} \left(
</p>
<pre> t \right) \cdot \mathrm{d}t =  \mathrm{G} \left( t \right) + C= \mathrm{G} \left(
 \mathrm{f} \left( x \right)\right) + C
</pre>
<p>

Las igualdades anteriores resumen en que consiste el metodo de sustitución. El método de sustitución es util en tanto en cuanto sea relativamente facil encontrar una primitiva 
\mathrm{G}
de 
\mathrm{g}
.


Ejemplo


Calculemos mediante el método de sustitución la integral


\int e^x \cdot \cos \left( \, e^x \, \right) \cdot \mathrm{d}x

Para ello utilizamos las formulas dadas en la descripción del metodo de sustitución con


\begin{array}{ll}
</p>
<pre> \mathrm{g} \left( x \right) & = \cos \left( x \right)
 \\
 \mathrm{f} \left( x \right) & = e^x
</pre>
<p>\end{array}

Observese que


\begin{array}{rl}
</p>
<pre> \mathrm{f}^\prime \left( x \right) & = e^x
 \\
 \int  e^x  \cdot \cos  \left(  \,  e^x \,  \right)  \cdot  \mathrm{d}x & =  \int
 \mathrm{g} \left( \, \mathrm{f} \left( x \right) \right) \cdot \mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x 
</pre>
<p>\end{array}

En este caso, una primitiva de   
\mathrm{g} \left( x \right)
  es


\mathrm{G} \left( \, x \, \right) = \mathrm{sen} \left( \, x \, \right)

Por lo tanto


\int  \mathrm{g}^\prime \left(  \,  \mathrm{f} \left(  x  \right) \right)  \cdot
\mathrm{f}^\prime \left( x \right) \cdot \mathrm{d}x = \int \mathrm{g} \left(
</p>
<pre> t \right) \cdot \mathrm{d}t =  \mathrm{G} \left( t \right) + C= \mathrm{G} \left(
 \mathrm{f} \left( x \right)\right) + C = \mathrm{sen} \left( e^x \right) + C
</pre>
<p>

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.